AI-Ni-Si (Aluminum-Nickel-Silicon)

V. Raghavan

At about the same time as a review of this ternary system by [2005Rag] appeared in print, new experimental results were reported by [2005Pan]; these supplement the reviewed results. Two full isothermal sections were reported by [2005Pan] at 850 and 750 °C. The new results are consistent with the data of Richter et al. [2003Ric, 2004Ric] reviewed by [2005Rag].

Binary Systems

The Al-Ni phase diagram [1993Oka] shows five intermediate phases: NiAl₃ ($D0_{11}$, Fe₃C-type orthorhombic), Ni₂Al₃ ($D5_3$ -type hexagonal), NiAl (B2, CsCl-type cubic), Ni₅Al₃ (Ga₃Pt₅-type orthorhombic), and Ni₃Al ($L1_2$, AuCu₃-type cubic, denoted γ'). The Al-Si phase diagram is a simple eutectic type [Massalski2]. The Ni-Si phase diagram [1999Du] has a number of intermediate phases: Ni₃Si with three modifications, the lowest temperature form being $L1_2$, AuCu₃-type cubic, Ni₅Si₂ (hexagonal), δ Ni₂Si (C23, Co₂Si-type orthorhombic), θ Ni₂Si (hexagonal), Ni₃Si₂ (orthorhombic), NiSi (B31, MnP-type orthorhombic), and NiSi₂ (C1, CaF₂-type cubic).

Ternary Phases

[2005Rag] has listed the structural parameters of the ternary phases of this system. Al₁₃Ni₆₇Si₂₀ (τ_1) is a solid solution based on the binary compound δ Ni₂Si. AlNi₂Si (τ_2) has the FeSi-type cubic structure. Al₆Ni₃Si (τ_3) has the Ge₇Ir₃-type cubic structure. Al₉Si_{9-y}Ni_{13±x} (τ_4) is not distinguishable from the binary compound θ Ni₂Si and is clubbed together with it as θ (τ_4). AlNi₁₆Si₉ (τ_5) is orthorhombic and is stable below 783 °C. [2005Pan] found a new compound Ni₅(Al,Si)₃ (τ_6), which appears to be the stabilized form of the binary compound Ni₅Al₃.

Ternary Isothermal Sections

With starting metals of 99.97% Al, 99.9995% Si, and 99.97% Ni, [2005Pan] arc melted 53 ternary alloys under Ar atmosphere. The alloys were annealed at 850 °C for 1200 h or at 750 °C for 1440 h and water quenched. The phase equilibria were studied by scanning electron microscopy and electron probe microanalysis. The isothermal sections constructed by [2005Pan] at 850 and 750 °C are redrawn in Fig. 1 and 2 to agree with the accepted binary data. The

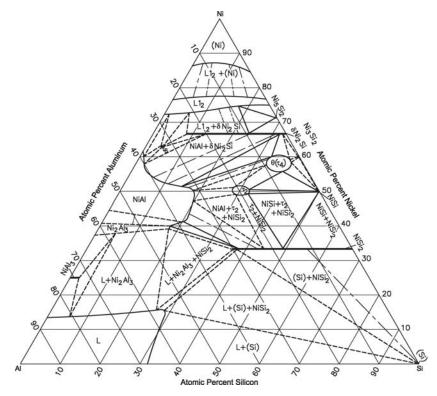


Fig. 1 Al-Ni-Si isothermal section at 850 °C [2005Pan]

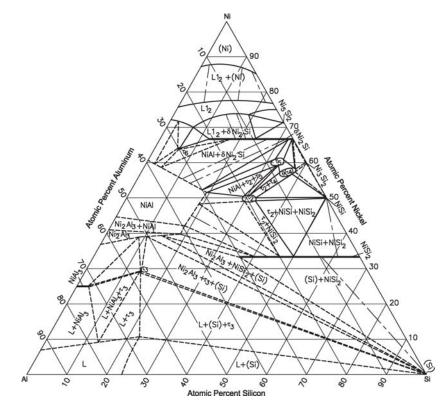


Fig. 2 Al-Ni-Si isothermal section at 750 °C [2005Pan]

ternary phase τ_6 is present at the composition $-Ni_{63}Al_{33}Si_4$ at 850 °C and at $-Ni_{64}Al_{30}Si_6$ at 750 °C. It appears to be the stabilized form of Ni₅Al₃, which is stable only below 700 °C in the Ni-Al binary system. Both at 850 and 750 °C, Ni₃Al and Ni₃Si form a continuous $L1_2$ -type solid solution. The solubility of Al in δNi_2Si is ~25 at.% at 850 °C and ~21 at.% at 750 °C [2005Pan]. The τ_1 phase does not appear separately from δNi_2Si at either of these temperatures. The solubility of Si in NiAl and Ni₂Al₃ is 20 to 18 and 18 at.%, respectively. The solubility of Al in NiSi₂ is as high as 30 at.%. The above results are consistent with those of [2003Ric] and [2004Ric].

References

1993Oka: H. Okamoto, Al-Ni (Aluminum-Nickel), J. Phase Equilibria, 1993, 14(2), p 257-259

- **1999Du:** Y. Du and J.C. Schuster, Experimental Investigations and Thermodynamic Descriptions of the Ni-Si and C-Ni-Si Systems, *Metall. Mater. Trans. A*, 1999, **30A**(9), p. 2409-2418
- 2003Ric: K.W. Richter and H. Ipser, The Al-Ni-Si Phase Diagram between 0 and 33.3 at.% Ni, *Intermetallics*, 2003, 11(2), p 101-109
- **2004Ric:** K.W. Richter, K. Chandrasekaran, and H. Ipser, The Al-Ni-Si Phase Diagram. Part II: Phase Equilibria between 33.3 and 66.7 at.% Ni, *Intermetallics*, 2004, **12**(5), p 545-554
- **2005Pan:** X.M. Pan, Z.P. Jin, and J.C. Zhao, Determination of the Isothermal Sections of the Al-Ni-Si Ternary System at 750 °C and 850 °C, *Metall. Mater. Trans. A*, 2005, **36A**, p 1757-1767
- 2005Rag: V. Raghavan, Al-Ni-Si (Aluminum-Nickel-Silicon), J. Phase Equilib. Diffus., 2005, 26(3), p 262-267